Площадь параллелограмма. Как найти площадь параллелограмма, треугольника, трапеции По какой формуле находят площадь параллелограмма

Параллелограмм – это четырехугольник, у которого стороны попарно параллельны.

В этой фигуре противоположные стороны и углы равны между собой. Диагонали параллелограмма пересекаются в одной точке и делятся ей пополам. Формулы площади параллелограмма позволяют найти значение через стороны, высоту и диагонали. Параллелограмм также может быть представлен в частных случаях. Ими считаются прямоугольник, квадрат и ромб.
Для начала рассмотрим пример расчета площади параллелограмма по высоте и стороне, к которой она опущена.

Этот случай считается классическим и не требует дополнительного разбирательства. Лучше рассмотрим формулу вычисления площади через две стороны и угол между ними. Этот же способ применяется в расчете . Если даны стороны и угол между ними, то площадь рассчитывается так:

Допустим, дан параллелограмм со сторонами a = 4 см, b = 6 см. Угол между ними α = 30°. Найдем площадь:

Площадь параллелограмма через диагонали


Формула площади параллелограмма через диагонали позволяет быстро найти значение.
Для вычислений понадобится величина угла, расположенного между диагоналями.

Рассмотрим пример расчета площади параллелограмма через диагонали. Пусть дан параллелограмм с диагоналями D = 7 см, d = 5 см. Угол, лежащий между ними α =30°. Подставим данные в формулу:

Пример расчета площади параллелограмма через диагональ дал нам прекрасный результат – 8,75.

Зная формулу площади параллелограмма через диагональ можно решать множество интересных задач. Давайте рассмотрим одну из них.

Задача: Дан параллелограмм с площадью 92 кв. см. Точка F расположена на середине его стороны ВС . Давайте найдем площадь трапеции ADFB , которая будет лежать в нашем параллелограмме. Для начала нарисуем все, что получили по условиям.
Приступаем к решению:

По нашим условиям ah =92, а соответственно, площадь нашей трапеции будет равняться

Параллелограмм – геометрическая фигура, часто встречающаяся в задачах курса геометрии (раздел планиметрия). Ключевыми признаками данного четырехугольника являются равенство противолежащих углов и наличие двух пар параллельных противоположных сторон. Частные случаи параллелограмма – ромб, прямоугольник, квадрат.

Расчет площади данного вида многоугольника может быть произведен несколькими способами. Рассмотрим каждый из них.

Найти площадь параллелограмма, если известны сторона и высота

Для вычисления площади параллелограмма можно воспользоваться значениями его стороны, а также длины высоты, опущенной на нее. При этом полученные данные будут достоверны как для случая известной стороны – основания фигуры, так и если в вашем распоряжении боковая сторона фигуры. В таком случае искомая величина будет получена по формуле:

S = a * h (a) = b * h(b),

  • S – площадь, которую следовало определить,
  • a, b – известная (или полученная путем вычислений) сторона,
  • h – высота, опущенная на нее.

Пример: значение основания параллелограмма – 7 см, длина перпендикуляра, опущенного на него из противолежащей вершины, – 3 см.

Решение:S = a * h (a) = 7 * 3 = 21.

Найти площадь параллелограмма, если известны 2 стороны и угол между ними

Рассмотрим случай, когда вы знаете величины двух сторон фигуры, а также градусной меры угла, который они между собой образуют. Предоставленными данными также можно воспользоваться для нахождения площади параллелограмма. В этом случае выражение-формула будет иметь следующий вид:

S = a * c * sinα = a * c * sinβ,

  • a – боковая сторона,
  • с – известное (или полученное путем вычислений) основание,
  • α, β – углы между сторонами a и c.

Пример: основание параллелограмма – 10 см, его боковая сторона на 4 см меньше. Тупой угол фигуры составляет 135°.

Решение: определяем значение второй стороны: 10 – 4 = 6 см.

S = a * c * sinα = 10 * 6 * sin135° = 60 * sin(90° + 45°) = 60 * cos45° = 60 * √2 /2 = 30√2.

Найти площадь параллелограмма, если известны диагонали и угол между ними

Наличие известных значений диагоналей данного многоугольника, а также угла, который они образуют в результате своего пересечения, позволяет определить величину площади фигуры.

S = (d1*d2)/2*sinγ,
S = (d1*d2)/2*sinφ,

S – площадь, которую следует определить,
d1, d2 – известные (или полученные путем вычислений) диагонали,
γ, φ – углы между диагоналями d1 и d2.

Формула для площади параллелограмма

Площадь параллелограмма равна произведению его стороны на высоту, опущенную на эту сторону.

Доказательство

Если параллелограмм - прямоугольник, то равенство выполнено по теореме о площади прямоугольника. Далее считаем, что углы параллелограмма не прямые.

Пусть в параллелограмме $ABCD$ угол $\angle BAD$ острый и $AD > AB$. Иначе переименуем вершины. Тогда высота $BH$ из вершины $B$ на прямую $AD$ падает на сторону $AD$, так как катет $AH$ короче гипотенузы $AB$, а $AB < AD$. Основание $K$ высоты $CK$ из точки $C$ на прямую $AB$ лежит на продолжении отрезка $AD$ за точку $D$, так как угол $\angle BAD$ острый, а значит $\angle CDA$ тупой. Вследствие параллельности прямых $BA$ и $CD$ $\angle BAH = \angle CDK$. В параллелограмме противоположные стороны равны, следовательно, по стороне и двум углам, треугольники $\triangle ABH = \triangle DCK$ равны.

Сравним площадь параллелограмма $ABCD$ и площадь прямоугольника $HBCK$. Площадь параллелограмма больше на площадь $\triangle ABH$, но меньше на на площадь $\triangle DCK$. Так как эти треугольники равны, то и их площади равны. Значит, площадь параллелограмма равна площади прямоугольника со сторонами длиной в сторону и высоту параллелограмма.

Формула для площади параллелограмма через стороны и синус

Площадь параллелограмма равна произведению соседних сторон на синус угла между ними.

Доказательство

Высота параллелограмма $ABCD$, опущенная на сторону $AB$ равна произведению отрезка $BC$ на синус угла $\angle ABC$. Осталось применить предыдущее утверждение.

Формула для площади параллелограмма через диагонали

Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними.

Доказательство

Пусть диагонали параллелограмма $ABCD$ пересекаются в точке $O$ под углом $\alpha$. Тогда $AO=OC$ и $BO=OD$ по свойству параллелограмма. Синусы углов, в сумме дающих $180^\circ$ равны, $\angle AOB = \angle COD = 180^\circ - \angle BOC = 180^\circ - \angle AOD$. Значит, синусы углов при пересечении диагоналей равны $\sin \alpha$.

$S_{ABCD}=S_{\triangle AOB} + S_{\triangle BOC} + S_{\triangle COD} + S_{\triangle AOD}$

по аксиоме измерения площади. Применяем формулу площади треугольника $S_{ABC} = \dfrac{1}{2} \cdot AB \cdot BC \sin \angle ABC$ для этих треугольников и углов при пересечении диагоналей. Стороны каждого равны половинам диагоналей, синусы также равны. Следовательно, площади всех четырёх треугольников равны $S = \dfrac{1}{2} \cdot \dfrac{AC}{2} \cdot \dfrac{BD}{2} \cdot \sin \alpha = \dfrac{AC \cdot BD}{8} \sin \alpha$. Суммируя всё вышесказанное, получаем

$S_{ABCD} = 4S = 4 \cdot \dfrac{AC \cdot BD}{8} \sin \alpha = \dfrac{AC \cdot BD \cdot \sin \alpha}{2}$

Что такое параллелограмм? Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

1. Площадь параллелограмма вычисляется по формуле:

\[ \LARGE S = a \cdot h_{a}\]

где:
a – сторона параллелограмма,
h a – высота, проведенная к этой стороне.

2. Если известны длины двух смежных сторон параллелограмма и угол между ними, то площадь параллелограмма вычисляется по формуле:

\[ \LARGE S = a \cdot b \cdot sin(\alpha) \]

3. Если заданы диагонали параллелограмма и известен угол между ними, то площадь параллелограмма вычисляется по формуле:

\[ \LARGE S = \frac{1}{2} \cdot d_{1} \cdot d_{2} \cdot sin(\alpha) \]

Свойства параллелограмма

В параллелограмме противоположные стороны равны: \(AB = CD \) , \(BC = AD \)

В параллелограмме противоположные углы равны: \(\angle A = \angle C \) , \(\angle B = \angle D \)

Диагонали параллелограмма в точке пересечения делятся пополам \(AO = OC \) , \(BO = OD \)

Диагональ параллелограмма делит его на два равных треугольника.

Сумма углов параллелограмма, прилежащих к одной стороне равна 180 o:

\(\angle A + \angle B = 180^{o} \), \(\angle B + \angle C = 180^{o}\)

\(\angle C + \angle D = 180^{o} \), \(\angle D + \angle A = 180^{o}\)

Диагонали и стороны параллелограмма связаны следующим соотношением:

\(d_{1}^{2} + d_{2}^2 = 2a^{2} + 2b^{2} \)

В параллелограмме угол между высотами равен его острому углу: \(\angle K B H =\angle A \) .

Биссектрисы углов, прилежащих к одной стороне параллелограмма, взаимно перпендикулярны.

Биссектрисы двух противоположных углов параллелограмма параллельны.

Признаки параллелограмма

Четырехугольник будет параллелограммом, если:

\(AB = CD \) и \(AB || CD \)

\(AB = CD \) и \(BC = AD \)

\(AO = OC \) и \(BO = OD \)

\(\angle A = \angle C \) и \(\angle B = \angle D \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,